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This work describes a multistep technique for the numerical solution of a two-dimen- 
sional Vlasov equation. The equation is tirst transformed, with respect to the two velocity 
variables v, and tr, , by expanding the distribution function f(x, y, ttz , v, , t) in terms of 
Hermite polynomials. The transformed equation is then integrated at each time step first 
in the x direction, and next in the y direction and vice versa. The numerical scheme 
is tested by studying the two-dimensional free streaming case and the linear Landau 
damping. The results show very good agreement with the theory. 

1. INTRODUCTION 

This paper discusses numerical methods and techniques for the solution of a 
two-dimensional Vlasov equation. We are dealing essentially with the dimensionless 
equation 

supplemented with the Poisson equation 

(&?&./ax) + (a&,/Q) = j-j-* f dv, dv, - 1. 
--a 

(2) 

The units of time, velocity, and space used in Eqs. (1) and (2) are the inverse 
plasma frequency, 0~;’ = (47Tn,e2/m)- 1/2, the thermal velocity vt = (KT/m)‘l”, 
and the Debye length An = (KT/4?m,e ) 2 lja. The other symbols have their con- 
ventional meaning. 

In recent years, numerical techniques have been successfully applied to the 
study of the nonlinear solution of the one-dimensional Vlasov equation [l-lo]. 
The difficulty in the numerical solution of this equation is that the distribution 
function f tends to develop tilamentation in phase space as time progresses [5]. 
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When a difference scheme is used for the velocity derivative term in the solution 
of Eq. (l), this filamentation requires smaller steps for the difference scheme 
and, consequently, an ever increasing computational effort for large times. Among 
the methods developed to overcome this difficulty, the use of velocity transform 
methods for the numerical solution of the one-dimensional Vlasov equation has 
been discussed and reviewed by Armstrong ef al. [I] and Joyce et al. [2]. The 
expansion of the distribution function in velocity space in terms of orthogonal 
polynomials, namely the Hermite polynomials, has been particularly studied by 
Grant and Feix [3], Armstrong [4], and Knorr [5]. The choice of the Hermite 
polynomials has been essentially dictated by the fact that no other classical poly- 
nomials possess such a simple expression for their derivatives. 

When transform methods are used to solve the one-dimensional Vlasov equation, 
a representation in spatial Fourier modes can be used as in [3, 41. In this case the 
product &(x, t)(af(x, D, , t)/&,) is transformed into convolution sums, thus 
increasing the computational effort. This drawback has been realized by 
Nuehrenberg [6] and Knorr [5], who transformed the one-dimensional Vlasov 
equation in velocity space, and solved the resulting equation using an appropriate 
difference scheme in configuration space. The velocity transformation used by 
Knorr [5] consisted in expanding the distribution function in velocity space in 
terms of Hermite polynomials; this resulted in a hyperbolic equation in con- 
figuration space which was solved using a two-level leapfrog scheme, initialized 
by using a two-level Lax-Wendroff scheme. These schemes have also been success- 
fully applied by Shoucri and Knorr [7] in connection with the Chebyshev repre- 
sentation of the Vlasov equation, and, more recently, by Shoucri and Gag& [8] 
(a detailed analysis of this scheme has been given in [5]). It is the purpose of the 
present work to extend the methods and the techniques previously developed for 
the study of the one-dimensional problem, particularly in [5, 7, 81, to the solution 
of the two-dimensional Vlasov equation (the set of Eqs. (l)-(2)). First, the equation 
will be transformed by expanding the distribution function f(x, y, U, , v, , t) 
in velocity space in terms of Hermite polynomials, then the resulting 2-D hyper- 
bolic differential equation will be solved in cotiguration space; this is effected by 
applying a multistep technique [l l] which consists of splitting up the two-dimen- 
sional equation and integrating it successively in the x and y direction and vice 
versa, using the leapfrog scheme previously applied to the one-dimensional case. 
The numerical scheme is tested by studying the free streaming case and also the 
linear Landau damping. Preliminary results of these studies have been reported 
in [12]. 

Section 2 will describe the Hermite representation of the two-dimensional Vlasov 
equation. In Section 3, we study the eigenvalue theory of the truncated system 
of equations in two dimensions; a discussion of the same problem for an infinite 
matrix, together with the evaluation of the recurrence time for a two-dimensional 
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truncated matrix, is given in the Appendix. In Section 4, we discuss the formal 
addition of damping to the Vlasov equation, this addition being made to render 
the solution of the truncated system more similar to the one of the infinite system. 
Section 5 presents the finite difference scheme which is used for solving, in con- 
figuration space, the two-dimensional Hermite representation of the Vlasov 
equation derived in Section 2. This scheme is a two-level scheme, and needs to 
be initialized properly; this initialization is discussed in Section 6. Section 7 
presents the numerical results and a comparison is made with available analytical 
results. Finally, Section 8 presents the conclusions. 

2. REPRESENTATIONOF THE TWO-DIMENSIONAL VLASOV EQUATION IN 
TERMS OF HERMITE POLYNOMIALS 

We expand the velocity dependence LJ, and v, , of the distribution function f, 
using the series of Hermite polynomials HJv,) and H,,(vJ 

f(x, Y, va! 9 VW 1 t) = (1/27-d f F W4h,&, J, t) Hev(~3c) H,,(QJ exp(-h2 - tb? 
v=o u-o (3) 

The constants h, and h, are arbitrary and will be adjusted as in [5] for a maximum 
of numerical convenience. When the series in Eq. (3) is inserted in Eq. (I), and 
coefficients for the Hermite polynomials are collected, one obtains the infinite 
system of differential equations 

We adjust the h, coefficients, following the same method as in [5], in such a way 
as to make the two coefficients h,Jh, and h,+,(v + 1)/h” equal; the h, coefficients 
are adjusted in the same way. As a result, Eq. (4) will contain only the coefficients 
py and pu defined by 

pv = L/h, . (5) 

The recursion relation 
P”PY+l = v + 1 (6) 

holds for py and a similar relation also applies for the coefficients pu . Equation (4) 
thus becomes 

(7) 
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The choice of p0 is arbitrary. We follow [S] and choose p,, = 1. Similarly we 
choose h,, = 1, from which it follows that h, = 1, h, = $, etc. 

For convenience, the distribution function is sometimes split into an homo- 
geneous part and a perturbation part, in a way similar to that followed when 
linearizing the Vlasov equation. We thus write 

m, Y9 h! 3 L’, 9 t> = fo(v, 3 v,) + m, 4’3 vz 9 v, 9 t) (8) 

where fi(x, Y, 0, , u, , t) is expanded using the series in Eq. (5). If we choose 
fo(z7z 9 v,) to be a Maxwellian distribution 

fo(v, , vu) = (1/2n-) exp(-+c,2 - ~,2) (9) 

we then obtain, in lieu of Eq. (7), 

+ PuKwYM”,u-l + LL+l ) - &4,u-~1 - &AJL = 0 (10) 
where 6 is the Kronecker symbol. The neglect of the terms EJI-~,~ and E&U--l 
in Eq. (10) will correspond to the exact linearization of the Vlasov equation. 

The system in Eqs. (7) and (IO) is infinite, since the summation in Eq. (3) extends, 
for v and p, up to infinity. In numerical calculations however, a computer can 
handle finite systems only and one is obliged to truncate the infinite system in 
Eq. (7) or Eq. (10) at, say, v = N, and p = N, , by setting arbitrarily 

~,.,(x Y, 0 = 0. (11) 

The substitution from Eq. (11) changes drastically the nature of the system in 
Eqs. (7) and (lo), since one is replacing the continuous eigenvalue spectrum of these 
equations, by the discrete number of eigenvalues of the truncated system. This 
results in a truncation instability (or recurrence effect) which has been extensively 
discussed for the one-dimensional problem [2, 5, 131. 

Similar effects also appear in the two-dimensional case, and, to obtain a clear 
comprehension of these effects, it is well worthwhile to go through the eigenvalue 
theory of the two-dimensional system. 

3. THE EIGENVALUE THEORY 

We set the electric field in Eq. (1) equal to zero for the moment and consider the 
“free streaming” case 
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The solution of Eq. (12) is clearly 

f(x, ?‘, CT, 3 l’, 3 t) = f(x - V& J - L’,?, l’, , 1?, , 0). (13) 

Substituting from Eq. (3) in Eq. (12) we get 

L + Pv(ww@-l.u + b”+l,,) + P,w~Ym,,-l + LL+d = 0. (14) 

When the infinite system in the previous equation is truncated at, say, v = N, 
and p = N, , by setting bNz,Ny (x, y, t) = 0, the continuous eigenvalue spectrum 
of this sytem is replaced by the set of discrete finite eigenvalues of the truncated 
system. To determine these eigenvalues and the corresponding eigensolution, we 
try the ansatz 

b,,,(x, ~7, t) = (-i)“(-i)” b,,, exp(ik,x + ik, y + At). 

From Eq. (14) we obtain 

&,, + bd--b,-I,, + bv+d + kup,(-L-l + L+d = 0. 

We next substitute in Eq. (16) by 

b,,, = i,S,HvH, 

and choose the parameter c, such that 

(L15v+l) = 43 . 

(16) 

(17) 

(18) 

We also choose [,, = 1; in this case one can easily verify that &‘Jrh, = (-i)‘/v!. 
We make a similar choice for the i, , which results in a similar relation for i&h, . 
With the help of Eq. (6), we get from Eqs. (16), (18) 

AH,H, + ik,(-vH,-,H, - H,+,H,,) + iky(-pHvHv-l - H,H,+,) = 0. (19) 

We assume that the value of A can be written in the form 

A = iw, + iw, , 

in which case Eq. (19) is rewritten 

(20) 

wz + k(--v(fL-,lK) - W,+IIW + w?/ + k,(-/-Wu-,I&) - Wu+~/&z)) = 0. 
(29 

The reason (1 was split up into two parts in Eq. (20) is that, as a result, Eq. (21) 
can be split up into two symmetric parts which are just the recurrence relation for 
the Hermite polynomials. Hence a solution for Eq. (21) can be found if H, and 
H,, are expressed in terms of Hermite polynomials 

Hv = &(4k,h (22) 

Hu = fLC4kJ. (23) 
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For the infinite system in Eq. (14), the eigenvalue spectrum is continuous. The 
time evolution of the distribution function f in this case is discussed in the 
Appendix. 

The system is finite if we require that Eq. (11) hold for v = N, and p = NY, 
i.e., if w,/k, and w,/k, are such-that - . 

f&WkA = 0, 

&v&-4,) = 0, 

or, equivalently, if 

w z = ktZmNz, oL= 1,2 ,**-, N,, 

% = k,Z,Nv, /I = 1, 2 ,..., NY , 

(24) 

(25) 

(26) 

(27) 

where Z? and Z,N 
and HeN,, 

y are the arth and ,Bth root of the Hermite polynomials HeN, 
respectively. Substituting the previous results into Eq. (3), we get for 

the free streaming case 

f(x, Y, L’, 9 0, , 0 = & “z. uEo a$o B’. + fL(Zf’9 &A$‘“) . . 

- H&LJ &h,) exp(-4~~22 - ~~~~~ ev[(ik~ + ik,y) 

+ i(k,ZeNz + k,Z~)l t, (28) 

where the constants Aa,B are to be determined from the initial conditions. Equation 
(28) indicates that the individual modes are periodic functions of time resulting in 
an almost periodic distribution function (an estimation of the recurrence time, 
for an initially Maxwellian distribution, is given in the Appendix), a behavior which 
is totally different from that for the continuous spectrum which shows the individual 
modes decaying to zero as time elapses, while the perturbation is transfered to 
modes of ever increasing order (Eq. (A.7)). 

4. THE ADDITION OF DAMPING 

In order to make the solution for the truncated system similar to the one for the 
infinite system, a method was suggested in [2] which consists of formally adding 
an imaginary part to the eigenvalues calculated in Eqs. (26), (27). This corresponds 
physically to the presence of dissipative terms on the right-hand side of Eq. (14), 
such as a “collision term,” for example. A study of this term for the one-dimen- 
sional Hermite representation of the Vlasov equation has been given by Knorr 
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and Shoucri [14], and the results can be readily generalized for the two-dimensional 
case. The damping operator used in the present calculations is of the form 

j4qq:-tf + ~V”C(L~)Z’~lf, (29) 

where C(U) is the Fokker-Planck operator 

C(c) = (a/aL$J(L~, + (ajav,) + (a/au,)(u, + (iyaP,) (30) 
and 

-72 E (iP/ax*) + (tY/ay2), (31) 

h and r] are constants, and r is an integer. The use of this operator corresponds to 
formally adding to the right-hand side of Eq. (14) a damping term given by 

-(v + /42r+1(x + $3 L(x, Y, Q. (32) 

The term with h effects a selective damping of the coefficients with large values 
of v or p; this corresponds to a smoothing of the distribution function if the 
ripples in velocity space exceed a certain steepness. The second term with V,J adds 
to the previous smoothing effect by causing a selective damping of the Fourier 
components having the highest wavenumbers (hence the lowest recurrence time, 
since, as shown in the Appendix, the recurrence time is given by 

T, = 2(N, + Ny)112(kz2 + ku2)-1/2). 

5. THE FINITE DIFFERENCE SCHEME 

The system in Eq. (10) is hyperbolic, and, rather than solving it as whole for 
each time step, we split up the equation and use a multistep technique [I l] whereby 
the equation is integrated first in the x direction and next in the y direction (or 
vice versa). More explicitly, we solve for the first half time-step: 

L + p”K~/w@“-l,, + L1.J - a%-L,l - &G-iJ, = 0 (33) 

(together with Poisson’s equation), and then, for the second half time-step, we 
solve the equation 

L + P,KwYm,.-l + Lt1) - ~&L-J - J%&wL = 0 (34) 

(together with Poisson equation). Whether Eq. (34) is integrated before Eq. (33) 
is arbitrary. Gourlay and Morris [15] suggested a procedure where the integrated 
value for a time-step is calculated by averaging the two values obtained by 
integrating the same initial value twice, first in the x to y direction and next in 
the y to x direction. The procedure however could be very time consuming since 
the integration has to be repeated twice for each time step. Instead, we use the 
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following, more economical, method: at a first time-step Eq. (7) is integrated in 
the x direction then in the y direction, then we alternate at the following time step 
and integrate the equation first in the y direction and then in the x direction, and 
we keep alternating directions at successive time-steps. The results obtained by this 
method have been compared, for the free streaming case, to those obtained using 
the previously described method by Gourlay and Morris [15], and were found to 
be identical. 

Equations (33) and (34) are hyperbolic equations and are solved numerically 
using a leapfrog scheme which was used for the one-dimensional problem by 
Knorr [5], Shoucri and Knorr [7], and Shoucri and Gagne [8]. 

The leapfrog scheme is two-level, and if we integrate Eq. (33) first, the difference 
scheme takes the form (note that p1 = 1) 

(35) 

= “La b Y+(l'"'(j, + &.i, + S) - p,W2WbZ%iz + Lj, + 1) 
+ bf-~~u(jz + 1, j,) - bZ~,LiT ,A, + 1) - bZ%i, ,A,) 
+ C'$Li3: + Lj, + 1) + bynf:Su(jz + L.iJ - C?,y(h ,.A, + 1) 
- b"+l v+l.rr(jz ,.iJl + f5 At C+Yiz + 9,iy + 4) 
x VZXi~ + hi, + $1 + W4d (36) 

The indices j, and j, indicate that the quantities are to be taken at the position 
x = j, Ax and y = j, dy. The superscript n indicates that the quantity is cal- 
culated at a time t = n At. The tilde over a quantity (6) indicated that the quantity 
is to be approximated as follows. 

b -Z$1’2)(.iz , j,) = &[b$1’2)(jz + 4, j, + 3 + bE$l’akiz + t,.i, - $1 

+ b~,~c1’2)(jz - 4, j, + 4) + bT!.$‘2)(j, - h.i, - HI. (37) 

The values of b.,, calculated in Eqs. (35) and (36) are next used to integrate 
Eq. (34) in the y direction. Equation (34) is similar to Eq. (33); with the appropriate 
substitution of the indices v and ~1 and the appropriate substitution of the dimension 

58J/23/3-3 



250 SHOUCRI AND GAGNh 

y for x, one can write for Eq. (34) a difference scheme similar to the one in Eq.(35) 
and (36). 

The electric field is calculated by solving Poisson’s equation for the potential 4; 
at integer time-steps t = n At, and positions x = j, dx and y = j, dy, we have 

(38) 

Equation (38) is solved for periodic boundary conditions using a fast Fourier 
transform algorithm. A similar equation that holds at half integer time-steps is 
obtained by substituting for n, j, , and j, in Eq. (38), by n + 4, j, + 4, A, + +, 
respectively. This leads to the value of the potential p+(1/2)(jz + $,j, + a). The 
electric field is calculated next from the potential by Fourier transforming the 
equation E = -V4. The integration of Eq. (35) at integer time-steps, however, 
necessitates prior knowledge of the electric field Ez+(1’2)(jz , j,,); because of this 
the value of the potential p+(lj2) ( j, , j,) has to be interpolated from that available 
for half integer time-steps p+(lj2) (j, + &j, + 4). This operation is effected 
using the fast Fourier transform algorithm to calculate the Fourier transform of 
the potential at a position shifted by (4 dx, + dy). The Fourier modes Ezk of E, 
are then calculated and transformed back to obtain E~+(1’2)(je , j,). A similar 
procedure is carried out for the integration at half time-steps in Eq. (36), where, 
in order to calculate E:+‘(j,, + +, j, + &), the value of the potential at 
@+l(jz + 3, j, + 4) has to be interpolated from the value available for integer 
time-steps p+l(jl: , j,). The conservation properties and the stability of the leap- 
frog scheme have been discussed in detail in [5]. 

To include, in Eqs. (35) and (36), the damping term given in Eq. (32), we split 
this operator and use the damping operator 

-(v + dzr+vS + rlww) k,(x, Y9 t) (3% 

for the integration in the x direction, and the damping operator 

-b + P)2’+1& + rl(a”PY2)) L(x, YY t) (40) 

for the integration in the y direction (with X = X, + h,). A Dufort-Frankel scheme 
has been used for the diffusion operators a2/ax2 and a2/ay2 in order to increase the 
stability of the system [7, 121. 

6. THE INITIALIZATION OF THE LEAPFROG SCHEME 

The leapfrog scheme expressed in Eqs. (35), (36) is a two-level scheme and must 
be initialized properly. For so doing, we followed the same steps as for the one- 
dimensional problem [5, 71 and used a two-level Lax-Wendroff scheme for the 
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initialization. We have followed the method of Gourlay and Morris [15] in con- 
structing a two-dimensional, two-level Lax-Wendroff scheme which accomplished 
an initialization of second order in the time-step dt. The initial value was integrated 
first in the x direction, then next in the y direction; the same initial value was 
taken back and integrated first in the y direction, then next in the x direction. The 
final integrated value has been taken as the average of the two previously integrated 
values. Details on this scheme can be found in [15]. 

As was pointed out by Knorr [5], the leapfrog scheme contains a parasitic mode of 
propagation which is not damped, and causes the two-levels of the scheme to 
drift apart. This difficulty was overcome in [5] by reinitializing the leapfrog scheme, 
after a number of time steps, before the drifting of the two levels became apparent. 
The same idea was applied in our present calculations; the Lax-Wendroff scheme, 
which was used for the initialization of the leapfrog scheme, has also been used 
to reinitialize the leapfrog scheme after each 20 time-steps. 

7. NUMERICAL RESULTS 

A. The Free Streaming Case 

We first present the results obtained when the electric field is omitted in the 
Vlasov equation. We consider the initial value for the distribution function f at 
t = 0: 

f(x, Y, t’, 3 % 3 0) = (1/27r) exp(-40, 2 - &,2)(,4~ cos k,x + A, cos k,y). (41) 

The substitution from Eq. (41) in Eq. (3) leads to 

b,,,(x, y, 0) = A, cos k,x + A, cos k, y, (42) 

L(x, Y, 0) = 0 v,p # 0. (43) 

We calculatef(x, y, U, , u, , t) from Eq. (13) and substitute in Eq. (3). After some 
straightforward algebra one finds that the time evolution of b,,., is given by 

ZI~,~(X, y, t) = exp(-k,*t”/2)(A, cos k,,x + A, cos k,y), (W 

where it is assumed for simplicity that k, = k, = k, = 2~r/L (L is the length of the 
periodic system in both directions). Equation (44) indicates that the quantity 
b&x, y, 0) given in Eq. (42) should decay exponentially in time as exp(-k,,2t2/2). 
In Fig. 1, we have plotted the logarithm of the numerical values obtained for 
b,,,(L/4,0), calculated with a matrix of N, = N,, = 15 polynomials, L = 2a, 
k, = k, = 1, A, = A, = 0.1, using a time-step of At = l/E6 and a mesh of 
16 x 16 points (curve (b)); we have also plotted the logarithm of the theoretical 
value of b,,,(L/4,0), calculated from Eq. (44) (curve (a)). Figure 1 shows a very 
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0 0.5 1 1.5 2 

TIME T 

FIG. 1. Plot of the logarithm of the numerical value calculated for &,(L/4,0), (curve (b)), 
together with the logarithm of the theoretical value taken from Eq. (44) (curve (a)) (for N, = 
N, = 15 polynomials, k, = k, = 1.0, A, = A, = 0.1, and At = l/16). 

I I I I I a I I I i I I I I I 

01234567 
TIME T 

FIG. 2. Plot of the logarithm of the numerical value of b&O, 0) and b,,,,,(L/4,0) (using the 
same parameters as in Fig. 1, together with a small damping 7 = (2 x 13)-‘, h. = h, = (2 x 13)-8. 
and r = 1). 

good agreement between the theoretical and the numerical curves. Moreover a 
numerical curve obtained with a time-step dt = l/32 was found to coincide exactly 
with the theoretical curve (a). Figure 2 shows the logarithm of the value obtained 
for ZJ~,~(O, 0) and b,,(L/4,0), up to a time t = 7.5 using a mesh of 8 x 8 points, the 
other parameters remaining the same as before. The results in Fig. 2, which were 
calculated using a very small damping v = (2 x 13)-*, h, = h, = (2 x 13)-s 
and r = 1, show the expected parabolic decay followed by the recurrence effect. 
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been done with 7 = ,5(2 x l3)-s, h, = /\,, = 7.5(2 x 13)-5 and r = 1. As can 
be seen in Fig. 3, the1 values of b&O, 0) and b,,,(@l, 0) at recurrence time have 
been reduced to about 3 % of their original values. 

4 5 6 7 8 9 10 

TIME T 

FIG. 3. Same as in F@. 2, but the damping has been increased to T) = 5.0 (2 x 13)-8, A, = 
A, = 7.5 (2 x 13)-* and r; = 1. The amplitude at recurrence is reduced to about 3 X of its original 
value. 

If one chooses, as initial condition, the distribution 

f (x, Y, l’, 3 L’, 3 0) = (1/2x) exp(-&2 - $ulla)(l + A, cos k$ + A, cos k, y), 

(45) 
then the substitution from Eq. (45) in Eq. (3) leads to 

b,.,(x, y, 0) = 1 + A, cos k,+ + A, cos k, y. W) 

The time evolution offis given by Eq, (13), which, together with Eq. (3), leads to 

b,,,(x, y, t) = 1 + exp(-k,,“t2/2)(Az cos k,,x + A, cos k,y). (47) 

Equation (47) shows that b,,, --f 1 as t - co. In Fig. 4a we have plotted the loga- 
rithm of the numerical value calculated for b&O, L/4) (curve (b)), together with 
the logarithm of the theoretical value calculated from Eq. (47) (curve (a)). The 
parameters usedare A, = A,, = 0.1, k, = k, = k, = 1 (L = 27r); N, = N, = 15 
polynomials, a mesh of 8 x 8 points, and a time step dt = l/16. Figure 4a shows 
a very good agreement between the theoretical and the calculated curve, until the 
recurrence effect becomes apparent. (In this case, the recurrence effect causes the 
initial curve to reappear upside down,) Figure 4b shows a plot of the logarithm of 
the numerical values calculated for b&O, 0) and b,,,(L/4,0). The results in Fig. 4 
were calculated by adding too small a damping (v = (2 x 13)-3, h, = & = 
(2 x 13)-3, r = 1) and, as can be seen, the recurrence effect remains important. 
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-.03 n ’ n ’ * ’ ’ ’ - ’ * ’ ’ ’ * ’ ’ ’ s 
0 12 3 4 5 ‘6 7’8 9 

/ 

IC I 
‘TIME T 

FIG. 4a. Plot of the logarithm of the numerical value calculated for b&O, L/4), (curve (b)), 
together with the theoretical value derived from Eq. (47). (For N, = NV = 15 polynomials, 
k, = k, = 1.0, A, = A, = 0.1, and At = l/16 and asmall damping 7 = AZ = X, = (2 x 13)-‘, 
r = 1). 

FIG. 4b. Plot of the logarithm of the numerical value of b&O, 0) and b&L/4,0) (using same 
parameters as in Fig. (4a)). 

.04 

9 .03 
2 

3 .02 

.Ol 

0 

0 1 2 3 4 5 6 7 8 9 
TIME T 

FIG. Sa. Same as in Fig. 4a, but the damping has been increased to 7 = 5.0(2 x 13)~* and 
& = XV = 7.5(2 x 13)-8. The recurrence effect has been almost completely eliminated. 
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I I IL! I I 

0 1 2 3 4 5 6 7 8 9 10 
TIME T 

FIG. Sb. Same as in Fig. 4b, but the damping has been increased to 7 = 5.0(2 x 13)-* and 
A, = A,, = 7.5(2 x 13)-‘. The recurrence effect has been almost completely eliminated. 

In Figs. 5a, and b, we have repeated the same calculations as in Figs. 4a, and b but, 
this time, using a larger damping (‘I = 5(2 x 13)-3, h, = X, = 7.5(2 x 13)-3). As 
can be seen, the recurrence effect is almost completely eliminated, the numerical 
curves remain very close to the asymptotic value of 1 indicated by Eq. (47). From 
Eq. (A.9) the value of the recurrence time is found to be TR = 7.74; this value is 
in very good agreement to that which can be inferred from Figs. 4 and 5. 

B. The Linear Landau Damping 

We have linearized Eqs. (1) and (2) around an equilibriumf, by assuming 

and have chosen for& the Maxwellian distribution given in Eq. (9). Also, we have 
chosen forfi , at t = 0, a perturbation of the form 

m, Y, v, 9 0, , 0) = fo dx, VI, (4% 

wheref, is defined in Eq. (9), and g(x, y) will be given different values to be discussed 
later on. The expansion of fi(x, y, v, , v, , t), using the series given in Eq. (3), 
together with the linearization of the Vlasov equation, leads to an equation which 
is identical to Eq. (lo), where the terms E.&,-1., and EYbY,U--1 are omitted and the 
electric field appear only through the terms E,S,,&,, and E,&,,S,, . Analytic 
solutions for the linearized two-dimensional Vlasov equation are available in the 
literature for the Maxwellian equilibrium distribution [16, 171. Several cases with 
different values of g(x, JJ) will be considered here. 

1. & # 0, E, = 0. We consider first the case when g(x, JJ) is function of x 
only 

g(x, r) = A, cos b, (50) 
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where we have taken A, = 0.05, k, = k, = 1 (L = 2~). In this case, the Fourier 
component I$&( 1,0) of the electric field E, is present at t = 0 and will decay 
exponentially in time according to the theory of Landau damping. The field 
component E, = 0 at t = 0 and remains zero for all time t. Figure 6 shows the 
exponential decay of Ezk plotted on a logarithmic scale against time. The numerical 
values for w/w, (frequency of the oscillation) and Y/C+, (damping rate of the 
oscillation) are 1.95 and 0.88, respectively, while the corresponding theoretical 
values are 2.046 and 0.851 [17]. The agreement can be considered as being very 
good, especially if one keeps in mind that we are using a mesh of 8 x 8 points 
only. We are also using a matrix of N, = N, = 40 polynomials, and a time-step 
d T = l/16; no damping is used in these calculations (7 = h, = X, = 0). In 
this case Eq. (A.9) indicates a recurrence time T, = 12.64 (the beginning of the 
recurrence effect is apparent at the end of Fig. 6). 

0 1 2 3 4 5 6 7 8 9 10 
TIME T 

FIG. 6. Linear Landau damping calculated from the linearized equation for parameters given 
in cases Bl and B2. 

2. The presence of two modes E&l, 0) and E&O, 1). We consider next the case 
when g(x, y) is given by 

g(x, y) = A, cos kd + A, cos k, y. (51) 

We choose A, = A, = 0.05, k, = k, = 1 (L = 27~). At t = 0, the Fourier 
components for E, and Ev are, respectively, Ezk( 1,O) and ,?&(O, 1). One can look 
for a solution of the linearized Vlasov equation of the form 

where 

m, Y, v, 3 t’, 7 t) = .ft&, CT , v, 7 0 + fi,(Y, v, 3 0, , t), (52) 

.A, It--O = foA, ~0s k&x, (53) 

fi, Lo = fd, ~0s by. (54) 
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In this case the linearized Vlasov equation can be written as 

which can be split into 

(%.Pt 1 + ~&!hx/~X) + &wi/~~z) = 0, (56) 

w&//at) + G?fiu/~Y) + w?lw = 0. (57) 

This means that the solution of the linearized two-dimensional Vlasov equation 
is the sum of the two solutions obtained from the two one-dimensional equations 
(Eqs. (56) and (57)). This fact is verified exactly by the numerical scheme, where 
the Fourier components E&l, 0) and E,,(O, 1) are found to remain exatly equal 
in time, decaying with the same damping rate and oscillating with the same 
frequency. Furthermore, since Eqs. (56) and (57) are equivalent to the equation 
one gets for case (1) when E, = 0, and since we are using identical initial conditions 
in Eqs. (53) and (55) as in Eq. (50), it follows that the curves one gets in the present 
case are identical to the curve (Fig. 6) one gets for case (1). This identity has been 
verified exactly by the numerical scheme. 

3. The presence of two modes E&0.5,0.5) and E,,(0.5,0.5). We consider now 
the case when g(x, JJ) is given by 

g(x, y) = A, cos kd cos k, E’. (58) 

We choose A, = 0.05, k, = k, = 0.5 (L = 4?r). The electric field components 
E, and E, have, at t = 0, the Fourier components E&0.5,0.5) and E,,(O.5, 0.5), 
respectively. These components are equal at t = 0 and remain equal for all time t. 

1 I 
0 5.0 10 15 ; 

TIME T 

FIG. 7. Linear Landau damping calculated from the linearized equation for parameters given 
in case B3. 
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Figure 7 shows the exponential decay of E,, plotted on a logarithmic scale against 
time (Euk gives an identical curve). The numerical values for w/w, and y/wp are 1.58 
and 0.35 respectively, while the theoretical values for k = (kz2 + kU2)l!* = 0.707 
are 1.67 and 0.39, respectively [17]. The agreement is considered very good, bearing 
in mind that we are using a mesh of 8 x 8 points only. We have used a matrix 
of N, = N, = 40 polynomials and a time-step of AT = l/16. No damping has 
been added in this case (‘I = h, = X, = 0). (From Eq. (A.9) the recurrence time 
is TR = 25.0). The calculations have been carried up to t = 18.75, and have 
required an execution time (CPU time) of about 250 minutes. 

4, Solution of the nonlinear Vlasov equation. As a further check of our fortran 
code, we have solved the full nonlinear Vlasov equation under the same initial 
conditions as in Section B2, but with k, = k, = 0.5 (L = 47T). The calculations 
have been done up to t = 10, with a mesh of 16 x 16 points, to allow for an 
adequate representation of the higher harmonics; we have also used 30 x 30 
polynomials. These calculations required almost four hours using an IBM 370/168. 
One expects the two modes E,,(O.5,0) and E,,(O, 0.5) to damp linearly at the early 
evolution of the system. The results are shown in Fig. 8. In Fig. 8a, the fundamental 
mode E&0.5,0) is decaying linearly according to the Landau theory (the calculated 
values are w/w, = 1.48 and yIwD = 0.158, to be compared with the theoretical 
values of w/w, = 1.415 and y/wD = 0.1533); the mode E&O, 0.5) remained 
exactly equal to E,,(OS, 0), decaying with the same damping rate. Furthermore, 
the excited harmonics of E,. and E,, were also exactly equal. Figures 8b and 8c 
show the higher modes E&l, 0) and E&0.5,0.5); their amplitude remained at 
least two orders of magnitude less than the amplitude of the fundamental Erk. 
mode. The modes E,,(O, 1) and E,,(0.5,0.5) remained exactly equal to E&l, 0) 
and E,,(O.5, 0.5) respectively. Hence, most of the electric energy remained in the 

-1, 
-31 c 

0 5 ‘10 -a 
0 5 10 

TIME T TIME T TIME T 

FIG. 8. (a) Linear Landau damping for the fundamental I&(0.5,0) mode obtained by solving 
the full nonlinear equation as discussed in case B4. (b) The harmonic /&,(I, 0) excited when solving 
the full nonlinear Vlasov equation as discussed in case 184. (c) The harmonic &(0.5,0.5) excited 
when solving the full nonlinear Vlasov equation as discussed in case FM. 
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fundamental mode. Figure 9 shows, on a linear scale, the exponential decay of 
the total electric energy. 

These calculations were done with a time-step AT = l/16; at t = 10 (i.e., 
after 160 iterations) the relative error in the total energy was 1.48 x 10-4. 
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FIG. 9. Exponential decay of the electric energy, plotted on a linear scale, for the case dis- 
cussed in B4 when solving the full nonlinear equation. 

8. CONCLUSION 

In the present work, we have developed a numerical scheme for the solution of 
a two dimensional Vlasov equation. The equation is first transformed in velocity 
space by expanding the distribution function in terms of Hermite polynomials, 
and then a multistep technique is used which consists in splitting up the trans- 
formed two dimensional equations and integrating it alternatively in each 
dimension in the configuration space. The results for the free streaming case and 
the linear Landau damping, which have been discussed in Section 7, show a very 
good agreement with the theory. 

The present results (with the exception of Section (B4) have been obtained using 
the IBM 370/155 of Lava1 University. The results for the linear Landau damping in 
Figs. 6 and 7 have been obtained using a matrix of 40 x 40 polynomials and a 
mesh of 8 x 8 points, with a time step AT = l/16; this has been effected without 
applying any damping to the finite matrix to eliminate the recurrence effect, in 
order to test the correctness of the scheme and to get a good comparison with 
available analytical results. The results presented in Figs. 8 and 9 have been 
obtained using the full nonlinear equation with a matrix of 30 x 30 polynomials 
and a mesh of 16 x 16 points; our fortran program required in this case almost 4 
hours of calculation using the IBM 370/168 of the Ministry of Education of the 
Provincial Government of Quebec. These results, calculated up to t = 10, show 



260 SHOUCRI AND GAGNi 

a linear behavior dominating at the early evolution of the sytem, as one would 
expect under the initial conditions used in Section B4. The results in Figs. 8 and 9 
could have been easily obtained using a mesh of 8 x 8 points and a matrix of 
only 10 x 10 polynomials. This was not done, however, because it was desired 
to know the computation time required for calculations performed with the same 
sets of matrices as we plan to use when carrying out simulations of nonlinear 
effects using the present 2-D code. 

In the present work, priority has been given to testing the correctness of the 
numerical scheme, the economy in the computational effort being of less immediate 
importance. The addition of damping should effectively eliminate the recurrence 
effect (as it has been successfully verified for the free streaming case in Figs. 3 
and 5) and should make it possible to reduce the number of polynomials used in 
the simulation. The optimized code should make it possible to simulate nonlinear 
effects with a matrix of 30 x 30 polynomials and a mesh of 16 x 16 points, i.e., 
the equivalent of (480)2 “particles”; this is equivalent to the simulation of a one- 
dimensional nonlinear Vlasov equation with 480 “particles,” which is the optimized 
result reported for the one-dimensional case in [5, 7, 81. 

APPENDIX: ESTIMATION OFTHE RECURRENCE TIMEFOR THE TRUNCATED MATRIX 

In order to estimate the recurrence time for the truncated matrix, we first 
consider the continuous spectrum of the infinite matrix for the free streaming 
case. The eigenvalues w+ and w.~ defined in Eq. (20) are continuous. Because of 
the linearity of the system, one can write the general solution of the system as a 
superposition of elementary solutions; from Eqs. (3) and (15k(23) we get 

where we have set S, = co5/kl, S, = w,/k, , and where the coefficient A(&, S,) 
is to be determined from the initial condition. 

Assume (as we did in our calculations) an initial perturbation of the form 

f (x9 Y, 4! , L’, 3 0) = (1/27r) exp(-+,* - +v,~) exp(ik& + ik, y). (A.3 

Substituting from Eq. (A.2) in Eq. (A.l) for t = 0, one can readily verify that 
a solution for A(& , S,) in this case is given by 

A(&, S,) = (1/27r) exp(-+SZ2 - *SU2). (A-3) 
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We substitute from Eq. (A.3) in Eq. (A.l); to evaluate the integral in Eq. (A.l), 
we use the generating function for the Hermite polynomials: 

esZ-u/2Jz= = 
!. (l/n 9 L(S) Z”. (A-4) 

Equation (A.4), together with the orghogonality relation for the Hermite 
polynomials, leads to 

s m He,(S) ,$Z-(1/2)Zze-(1/2)S” ds = (&.+/2 zu. 
(A.3 

-03 

Hence we have obtained the result 

J -m HdS) ,+Z-(S*/2) ds = (2,.41/2 Zue”/2’Z*. 64.6) --m 

Substituting in Eq. (A.6) successively by S = S, and Z = ik,t, S = S, and 
Z = ik,t, we get forf, from Eq. (A.l): 

fk Y, uz1 &, t) = $ f f (ik,t)Y(ik,t)Y exp(-&(k,’ + k,2) t2) 
v-o u=o 

H&z) &h) .- 
v! 

- exp(- $cz2 - &J,~) exp(ik.g + ik, y). 
P! (A.7) 

Equation (30) indicates a time behavior for the v, p mode proportional to 
tvfu exp(-$(kz2 + kv2) t’). Extending to the two dimensions the formalism used 
by Knorr [5] in one dimension one can picture the perturbation which starts for 
t = 0 at b,,, (given in Eq. (42) or (46)), as a signal with starts for t = 0 at v = p = 0 
and then propagates to higher values of (v, p). From Eq. (A.7), the signal will 
reach the mode v, p at the time when the quantity tvfu exp(-$(kz2 + kv2) t2) is 
maximum, i.e., at a time t given by 

t = (v + #/2’/(kz2 + ky2)(1/2). (A-8) 

An estimation of the recurrence time for a truncated matrix can be obtained as 
follows. If the infmite matrix is truncated at, say, v = N, , and TV = N, , the time 
it takes for a perturbation to reach the boundary of the truncated matrix at the 
“mode” (Nz , NV) can be calculated from Eq. (A.8); if we estimate that it takes an 
equal time for the perturbation to return back to the origin, one can get for the 
recurrence time the estimation 

TR = 2((N, + N,)‘l/“‘/(k.” + ky2)(lj2)). (A.9) 

For N, = NV = 15 and k, = k, = 1, we get T, = 7.74, a value which is in 
excellent agreement with the numerical results given in Figs. 3,4, and 5. 
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